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1. Introduction

Four-dimensional N=1 supersymmetric vacua of type II supergravity with fluxes can be

analyzed directly in D=10 or by means of an effective potential formalism in D=4. In this

work we point out that a class of type IIA vacua, with geometric fluxes switched on, that

were found using the latter method [1] corresponds to compactification on AdS 4 × S3 ×
S3/Z3

2. The results obtained using the effective formalism are in complete accord with the

general conditions for the existence of AdS 4×M6 vacua [2 – 4]. This is a particular example

of the equivalence between the higher and lower dimensional approaches considered lately

in greater generality [5, 6].

In the AdS 4 × S3 × S3/Z3
2 compactification, that we study in depth, we show that the

internal metric is nearly-Kähler. In [7] it was first proven that when M6 is nearly-Kähler

there are consistent vacua of massive IIA supergravity with N=1 supersymmetry in AdS 4.

As also remarked in [7], besides S3×S3, there are other six-dimensional compact spaces that

admit a nearly-Kähler metric, namely S6, CP
3 and SU(3)/U(1)2 [8]. However, these spaces

are not group manifolds and cannot be treated in a simple effective approach based on

adding geometric fluxes to a toroidal compactification. It would be interesting to formulate

all nearly-Kähler compactifications within the effective four-dimensional approach. A first

step in this direction is the Kaluza-Klein reduction on nearly-Kähler spaces [9]. The case

of SU(3)/U(1)2 has been considered in [10].

A property of nearly-Kähler compactifications is that for special values of the fluxes the

Bianchi identity for the RR 2-form can be satisfied without adding sources [7, 2]. For other
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ranges of parameters it is necessary to add O6-planes, D6-branes, or both, wrapping 3-cycles

in the internal space. In any case, including D6-branes is required to generate charged chiral

multiplets. In the S3×S3/Z3
2 compactification we will present examples of supersymmetric

D6-branes that can be included to fulfill the Bianchi identity or equivalently to cancel

tadpoles. This problem was first addressed in [11] where it was argued that a certain setup

of D6-branes could cancel the tadpoles. We find similar results at the time we go further

in proving tadpole cancellation because we supply the explicit background fluxes.

The second part of this paper is devoted to describing how other N=1, AdS 4 vacua of

massless IIA supergravity, discovered long time ago [12 – 15], fit into the modern analysis

of flux vacua. In these compactifications the internal space can be CP
3 or SU(3)/U(1)2,

but the metric is not nearly-Kähler. We will focus on the CP
3 example, but the analysis

can be easily extended to SU(3)/U(1)2. We give explicit expressions for the metric and

the fluxes and then find the Killing spinor that allows to derive the fundamental forms that

define the SU(3) structure.

The organization of this paper is as follows. In section 2 we summarize the conditions

for the existence of N=1 AdS 4 vacua derived from the D=10 theory. We also discuss the

issue of solving the Bianchi identity for the RR 2-form with or without sources. In section

3 we study compactification on AdS 4 × S3 × S3/Z3
2 by describing the internal space in

terms of a set of structure constants, the so-called geometric fluxes, known to give N=1

vacua from the analysis of the D=4 effective potential. We then explain how the Bianchi

identity for F2 can be satisfied in general by adding sources and present as well a concrete

configuration of D6-branes in the massless case. There is an important interplay with the

results in the D=4 effective formalism that are collected in appendix A. Section 4 deals with

the compactification on AdS 4 × CP
3 that provides an example where the internal space is

not nearly-Kähler. In appendix B we show that the proposed metric and background fluxes

in CP
3 do satisfy the equations of motion and preserve N=1 supersymmetry in D=4.

2. Review of supersymmetric conditions in D=10

We are interested in N=1 compactifications of type IIA supergravity with fluxes turned

on and warped product geometry

ds2 = e2A(y)ds24 + ds26 , (2.1)

where ds24 and ds26 are respectively the line elements of AdS 4 and the internal compact

space. The general conditions that these vacua must fulfill were derived in [2] using Romans

massive action [16] and also in [3, 4] starting with the democratic formulation of IIA

supergravity [17]. In this note we use the results and notation of [4] that are more suited

to compare with the effective potential approach.

By assumption, the internal manifold has strictly SU(3) structure, i.e. it admits only

one nowhere vanishing invariant spinor which in turn allows to write a fundamental 2-form

J and a holomorphic 3-form Ω satisfying the relations

Ω ∧ J = 0 ; Ω ∧ Ω∗ = −4i

3
J ∧ J ∧ J . (2.2)
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In the most general supersymmetric solution of the equations of motion, the warp factor

and the dilaton are constants related by φ = 3A. Moreover, the characteristic forms J and

Ω must meet the conditions

dJ = 2m̃e−ARe Ω̂ ; dΩ̂ = −4i

3
m̃e−AJ2 − iW2 ∧ J , (2.3)

where W2 is a real primitive 2-form. Here Ω̂ = −iei(α+β)Ω, with α, β, phases that enter in

the normalization of the D=10 supersymmetry parameters (see [4] for more details). The

equations of motion also require (α− β) to be a constant.

Besides the constant m̃, the solutions depend on the IIA mass parameter m. These

two real quantities are combined into the complex constant

µ = e−i(α−β) (m+ im̃) . (2.4)

The parameter µ enters in the covariant derivative of the D=4 gravitino and it turns out

to be related to the cosmological constant through Λ = −3|µ|2. This Λ is defined with

respect to the unwarped AdS4 metric.

In the solution the field strengths are determined to be1

H = 2me−ARe Ω̂ ; F0 = −5me−4A ; F2 = −e−3A ∗ dIm Ω̂ − 3m̃e−4AJ

F4 = −3
2me

−4AJ2 ; F6 = 1
2m̃e

−4AJ3 .
(2.5)

The relation to the NSNS and RR forms is given by

H = dB +H ; Fp = dCp−1 −H ∧ Cp−3 +
(
F ∧ eB

)
|p . (2.6)

The barred quantities are background fluxes and F = F0 + F2 + F4 + F6 is a formal sum.

Clearly, (2.3) implies J ∧ dJ = 0 and d(Re Ω̂) = 0. This means that the internal

space is always a half-flat manifold. If the torsion class W2 vanishes the internal space is

nearly-Kähler and the RR 2-form simplifies to

F2 = −m̃
3
e−4A J . (2.7)

This implies in particular that dF2 6= 0 in nearly-Kähler compactifications.

The Bianchi identities for H and F4 are automatically satisfied. On the other hand,

for the RR 2-form the generic results imply dF2 − F0H 6= 0. The situation is not hopeless

because there might be further contributions due to D6-branes or O6-planes wrapping 3-

cycles in the internal space. Actually, the Bianchi identity (BI) for F2 is equivalent to

tadpole cancellation conditions for the RR C7 form that couples to such sources.

Following the prescription of [4] we assume that the sources are smeared instead of

localized. This means that in the BI D6-branes and O6-planes can be represented by

additional 3-forms in the internal space. This is actually the only consistent possibility

1The sign differences with respect to equation (7.9) in [4] are due to our conventions ∗J = J2/2 and
∗1 = J3/6, where ∗ is the Hodge dual in six dimensions.
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for the AdS 4 vacua in which the warp factor must be constant. Upon including smeared

sources the BI becomes

dF2 − F0H +A3 = 0 , (2.8)

where A3 is the Poincaré dual to internal 3-cycles wrapped by D6-branes or O6-planes.

By virtue of (2.6), this identity can be written purely in terms of background fluxes as

dF 2 − F0H +A3 = 0.

A property of the N=1 AdS 4 vacua is that H ∝ dJ . Thus, the form A3 is necessarily

exact. In consequence, to saturate the Bianchi identity of the RR 2-form, or equivalently

to cancel C7 tadpoles, the sources need not wrap non-trivial 3-cycles. This point has been

known for some time [11, 18] and further elaborated recently [19]. Due to the special

properties of AdS 4 such D6-branes can still be stable.

When F0 6= 0 there could be a solution of (2.8) without sources even if dF2 6= 0.

Indeed, when the internal space is nearly-Kähler from the above results it follows that

dF2 − F0H =
2

3
e−5A(15m2 − m̃2)Re Ω̂ . (2.9)

Therefore, it is possible to avoid sources, i.e. A3 = 0, provided that m̃2 = 15m2. This

interesting fact was first obtained in [7] and later in [2]. On the other hand, if m̃2 6= 15m2,

sources must be added to fulfill the Bianchi identity. For instance, if m̃2 > 15m2 a solution

can be achieved by adding only D6-branes. This follows because supersymmetric 3-cycles

are calibrated by Re Ω and in this case
∫
M6

ReΩ ∧ A3 > 0. Here we are taking Ω̂ = −iΩ
according to results in appendix A.

It is also feasible to satisfy the Bianchi identity without sources and F0 = 0 simply when

dF2 = 0. Clearly, in this situation the internal space cannot be nearly-Kähler. Instead,

the torsion class W2 must be non-zero. Examples of this type were actually found several

years ago [12 – 15]. In section 4 we discuss in detail the case of compactification on CP
3.

3. Flux compactification on AdS4 × S3 × S3

We are interested in N=1 type IIA vacua in presence of geometric fluxes ωP
MN together

with NSNS and RR fluxes. Such solutions can be viewed as compactifications in which the

internal space has a basis of globally defined 1-forms satisfying

dηP = −1

2
ωP

MNη
M ∧ ηN , (3.1)

where the ωP
MN are the structure constants of some Lie group G. If the Killing form

KMN = ωP
MRω

R
NP is non-degenerate, G is semisimple and furthermore it is compact if

KMN is negative definite. If G is not semisimple, but it has a discrete compact sub-group

Γ, the internal space can be compactified by taking the quotient G/Γ. This is the case of

the nil and solvmanifolds studied in [4]. In this note we rather study the situation where

G is compact and the internal space is the G group manifold. In particular, we want

to show that in a class of supersymmetric AdS 4 × M6 vacua found in [1] the structure

constants are actually those of SU(2)× SU(2) and the internal space is S3 × S3 realized as

SU(2) × SU(2) × SU(2)/SU(2)diag.
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The number of independent geometric fluxes ωP
MN can be reduced by imposing ad-

ditional conditions on the internal space. We will enforce a Z2 × Z2 symmetry whose

generators act as

Z2 : (η1, η2, η3, η4, η5, η6) → (−η1,−η2, η3,−η4,−η5, η6)

Z2 : (η1, η2, η3, η4, η5, η6) → (η1,−η2,−η3, η4,−η5,−η6) . (3.2)

Furthermore, keeping in mind the eventual need for orientifold planes to cancel tadpoles,

the geometric fluxes are required to be invariant under an orientifold involution σ which is

also a Z2 symmetry given by

σ : ηi → ηi ; ηi+3 → −ηi+3 , i = 1, 2, 3 . (3.3)

In the end only twelve geometric fluxes survive and they are further constrained by the

Bianchi identities following from (3.1). In the AdS 4 solutions found in [1] there are only

four independent parameters a and bi which appear in the structure equations

dη1 = −aη56 − b1η
23 ; dη4 = −b2η53 − b3η

26

dη2 = −aη64 − b2η
31 ; dη5 = −b1η34 − b3η

61

dη3 = −aη45 − b3η
12 ; dη6 = −b1η42 − b2η

15.

(3.4)

The notation η12 = η1 ∧ η2, etc. is understood.

For future purposes we record the 2, 3 and 4-forms invariant under the Z2 × Z2 sym-

metry. These are

ω1 = −η14 ; α0 = η123 ; β0 = η456 ; ω̃1 = η2536

ω2 = −η25 ; α1 = η156 ; β1 = η423 ; ω̃2 = η1436

ω3 = −η36 ; α2 = η426 ; β2 = η153 ; ω̃3 = η1425

α3 = η453 ; β3 = η126 .

(3.5)

Notice that αI and ω̃i are even whereas βI and ωi are odd under the orientifold involution.

The normalization is ∫

M6

αi ∧ βj =

∫

M6

ωi ∧ ω̃j = V6 δij , (3.6)

where V6 is a constant to be computed later on.

When the geometric fluxes a and bi are zero, the internal space can be compactified

into a flat six-dimensional torus. Moreover, the Z2 ×Z2 symmetry that is assumed implies

that this torus is a product of three T2
i . Each 2-torus has a basis of 1-forms (ηi, ηi+1),

a Kähler modulus (area) ti and a complex structure parameter τi that must be real for

consistency with the orientifold involution. With this picture in mind we take the metric

on M6, with a, bi 6= 0, to still be given by

ds26 =
3∑

i=1

ti
τi

(ηi)2 + tiτi(η
i+3)2 . (3.7)

By construction, ti > 0 and τi > 0. Clearly,
√
g6 = t1t2t3. Integrating gives the volume

Vol(M6) = V6 t1t2t3, where V6 is the normalization constant defined above.
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The hermitian almost complex structure corresponding to the metric is

J = −t1η14 − t2η
25 − t3η

36 = tiωi . (3.8)

The associated holomorphic (3,0) form can be written as

Ω =

√
t1t2t3
τ1τ2τ3

(η1 − iτ1η
4) ∧ (η2 − iτ2η

5) ∧ (η3 − iτ3η
6) . (3.9)

These J and Ω satisfy (2.2) so that they provide an SU(3) structure on the internal space

M6. Notice also that under the orientifold involution, J → −J and Ω → Ω∗.

From (3.4) we find that dJ and dΩ are not zero but J∧dJ and d(Im Ω) do vanish. Thus,

the M6 defined by (3.4) is a half-flat manifold. Additional properties must be fulfilled for M6

to serve as internal space in an N=1 supersymmetric AdS 4 vacua of type IIA. Moreover,

it is necessary to turn on particular NSNS and RR background fluxes. Now, from the

discussion in [1] we know that a solution is obtained with a precise set of fluxes invariant

under the Γ = Z
3
2 group of symmetries (3.2) and (3.3). Furthermore, in this solution the

variables ti and τi that enter in the metric satisfy specific relations. In the following our

strategy is to use these results to continue analyzing the properties of the M6 at hand.

In the appendix we review the conditions of [1] to obtain AdS 4 ×M6 supersymmetric

minima. The fluxes allow a configuration with t1 = t2 = t3 = t, where t is completely fixed.

A crucial property is that the structure constants a and bi must all have the same sign.

Also, the second equation in (A.9) together with the explicit form of the moduli, c.f. (A.4),

gives the very useful relations

biτjτk = 3a ⇒ τ2
i =

3abi
bjbk

, i 6= j 6= k . (3.10)

We then find

dJ =
3

2
Im (W1Ω) ; dΩ = W1 J ∧ J ; W1 =

2a√
tτ1τ2τ3

(3.11)

In general the exterior derivatives of J and Ω can be expressed in terms of torsion classes

(see e.g. [20]). In our case, from (3.11) we easily see that the only non-zero class is W1.

This is precisely the condition for the internal space to be nearly-Kähler.

It is a simple exercise to compute the Killing form for the structure constants given

in (3.4). We find

K = −4 diag(b2b3, b1b3, b1b2, ab1, ab2, ab3) . (3.12)

Now, recall that to obtain AdS 4 × M6 supersymmetric minima the geometric fluxes a

and bi must all have the same sign. Therefore, K is non-degenerate and negative-definite.

We might guess that the semisimple compact algebra being six-dimensional is that of

SU(2) × SU(2). Indeed, after performing the change of basis

ξ1 =
√
b2b3 η

1 +
√
ab1 η

4 ; ξ̂1 =
√
b2b3 η

1 −
√
ab1 η

4

ξ2 =
√
b1b3 η

2 +
√
ab2 η

5 ; ξ̂2 =
√
b1b3 η

2 −
√
ab2 η

5

ξ3 =
√
b1b2 η

3 +
√
ab3 η

6 ; ξ̂3 =
√
b1b2 η

3 −√
ab3 η

6 ,

(3.13)

– 6 –



J
H
E
P
0
2
(
2
0
0
8
)
0
8
6

the structure equations become

dξi = −1

2
ǫijk ξ

i ∧ ξj ; dξ̂i = −1

2
ǫijk ξ̂

i ∧ ξ̂j . (3.14)

This confirms that the underlying algebra is that of SU(2) × SU(2).

We can take the ξi and ξ̂i to be two sets of SU(2) left invariant 1-forms. Concretely,

ξ̂1 = cos ψ̂dθ̂ + sin ψ̂ sin θ̂ dφ̂

ξ̂2 = − sin ψ̂dθ̂ + cos ψ̂ sin θ̂ dφ̂ (3.15)

ξ̂3 = dψ̂ + cos θ̂ dφ̂ ,

and similarly for the ξi. The range of angles is 0 ≤ θ̂ ≤ π, 0 ≤ φ̂ ≤ 2π and 0 ≤ ψ̂ ≤ 4π.

Our claim that the internal space is S3 × S3 is supported by the explicit form of the

metric in the new basis. Substituting (3.13) into (3.7) readily gives

ds26 =
t√

3ab1b2b3

[
(ξi)2 + (ξ̂i)2 − ξiξ̂i

]
. (3.16)

This is an Einstein metric that belongs to a family of homogeneous metrics on S3×S3 [21].

The isometry group is SU(2)3 [22, 23]. There are two SU(2)’s from the left actions that

leave ξi and ξ̂i separately invariant, and a further SU(2) from a simultaneous right action

by the same element on ξi and ξ̂i. From the metric and the explicit realization of the SU(2)

1-forms the volume of S3 × S3 can be evaluated to be

Vol(S3 × S3) =
(4π)4 t3

(4ab1b2b3)3/2
≡ V6 t

3 , (3.17)

where V6 is precisely the normalization constant introduced in (3.6).

In the new basis the fundamental forms J and Ω are given by

J =
t

2
√
ab1b2b3

(ξ1 ∧ ξ̂1 + ξ2 ∧ ξ̂2 + ξ3 ∧ ξ̂3) (3.18)

Ω = − t3/2

(3ab1b2b3)3/4
(ξ1 + e2iπ/3ξ̂1) ∧ (ξ2 + e2iπ/3ξ̂2) ∧ (ξ3 + e2iπ/3ξ̂3) .

Similar expressions have appeared in the literature some time ago [11] and more re-

cently [19].

At this point we must remember that our actual model is constrained by some spe-

cific symmetries. Indeed, the geometric fluxes (3.4), as well as the NSNS and RR back-

grounds (A.5), have been chosen to be invariant under the group Γ = Z
3
2 of transformations

given by the geometric Z2 × Z2 (3.2) and the orientifold involution σ (3.3). The action of

σ amounts to exchange of the spheres, ξi ↔ ξ̂i, which is clearly a symmetry of the metric.

On the other hand, the geometric Z2 × Z2 corresponds to

Z2 : (ξ1, ξ2, ξ3, ξ̂1, ξ̂2, ξ̂3) → (−ξ1,−ξ2, ξ3,−ξ̂1,−ξ̂2, ξ̂3)

Z2 : (ξ1, ξ2, ξ3, ξ̂1, ξ̂2, ξ̂3) → (ξ1,−ξ2,−ξ3, ξ̂1,−ξ̂2,−ξ̂3) (3.19)

– 7 –
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which also leaves the metric invariant. The effect of these latter symmetries is to restrict

the range of the angles that define the 1-forms, c.f. (3.15). The first and second Z2’s imply

respectively θ̂ ≡ −θ̂, and ψ̂ ≡ −ψ̂ simultaneously with φ̂ ≡ −φ̂, and analogous for the

unhatted angles. In the end we truly have internal space S3 × S3/Γ, with volume given by

V6t
3/8. We will write

Vol(S3 × S3/Γ) = C t3 , (3.20)

where C = V6/8 = 4π4/(ab1b2b3)
3/2.

The nearly-Kähler metric on S3 × S3 is also invariant under the order three transfor-

mation

β : ξi → −ξ̂i ; ξ̂i → ξi − ξ̂i . (3.21)

This β-symmetry proves useful when studying properties of 3-cycles on S3 × S3 [11].

3.1 D6-branes on S3 × S3 and Bianchi identity for F2

When dF2 6= 0, the Bianchi identity for the RR 2-form can still be fulfilled by adding

appropriate sources. The task is to find the 3-form A3 that satisfies (2.8) and is the

Poincaré dual of the 3-cycles wrapped by the sources.

In general, A3 is some combination of the 3-forms of the internal space so that it is

important to characterize these forms, specially knowing that A3 must be exact. For S3×S3

the third Betti number is equal to two and the third cohomology is rather simple. The two

representative closed 3-forms are easier to describe in the (ξi, ξ̂i) basis. In fact, they are

basically the volume forms of each S3, namely

h =
ξ123

(4ab1b2b3)3/4
; ĥ = − ξ̂123

(4ab1b2b3)3/4
. (3.22)

The normalization has been chosen so that

h ∧ ĥ =
J3

6t3
= η123456 . (3.23)

From the six remaining 3-forms that can be constructed there are three exact combinations

given by d(ξi ∧ ξ̂i). The corresponding forms in terms of the ηM basis are found using the

map (3.13). In particular, it follows that

aη456 = b1η
423 = b2η

153 = b3η
126 =

(
ab1b2b3

64

)1/4

(h+ ĥ) , (3.24)

where each equality is modulo exact forms.

Let us now study the homology. Our discussion resembles that in [23] and [11]. In

S3 × S3 we can identify three special 3-cycles as explained below.

1. The locus ξ̂i = 0. By definition this is the first 3-sphere S3
1. From the metric (3.16),

ds26
∣∣
ξ̂i=0

= ds23(S
3
1) =

t√
3ab1b2b3

(ξi)2 . (3.25)
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From the Ω form we find that ImΩ
∣∣
ξ̂i=0

= 0, and moreover

ReΩ
∣∣
ξ̂i=0

= − t3/2

(3ab1b2b3)3/4
ξ123 = −dvol(S3

1) . (3.26)

This shows that the charge of a brane wrapping S3
1 is −1, it would be an anti D6-

brane in our conventions. For a D6-brane the 3-sphere must be wrapped in reverse

orientation. We will define the corresponding 3-cycle to be D1 = (−S3
1).

2. The locus ξi = 0. By definition this is the second sphere S3
2. We now find that

Re Ω
∣∣
ξi=0

= −dvol(S3
2) . (3.27)

Thus, a brane wrapping S3
2 has charge −1 and it is an anti D6-brane in our conven-

tions. Since Im Ω
∣∣
ξi=0

= 0, we surmise that the supersymmetric D6-brane must wrap

the 3-cycle D2 = (−S3
2).

3. The locus ξi = ξ̂i. By definition this is the diagonal 3-sphere S3
D. It is easy to check

that ImΩ
∣∣
ξi=ξ̂i = 0. Besides, from the metric (3.16) and the Ω form we deduce

ReΩ
∣∣
ξi=ξ̂i = dvol(S3

D) . (3.28)

Due to some extra factors now there is a plus sign in front so that the charge of a

brane wrapping the diagonal 3-sphere is a D6-brane with charge +1. We will denote

D0 = S3
D.

The three 3-cycles discussed above, D0, D1 and D2, cannot be independent since the

third Betti number of S3 × S3 is two. In fact there is a linear relation among these

cycles that will become clear when we discuss the corresponding dual 3-forms.

In general, given a 3-form X integrated over one of the 3-cycles Di, the Poincaré dual

form Yi to Di in M6 = S3 × S3 is such that
∫

Di

X =

∫

M6

X ∧ Yi . (3.29)

For example, for D1 = (−S3
1) we find

Y1 = − ĥ√V6
, (3.30)

where ĥ is defined in (3.22). To demonstrate this we can choose

X = dvol(D1) = − t3/2

(3ab1b2b3)3/4
ξ123 = − V3

(4π)2
ξ123 , (3.31)

so that
∫
D1
X = V3. On the other hand we can also compute

∫

M6

X ∧
(
− ĥ√V6

)
= V3 . (3.32)
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In a similar fashion we obtain the dual to D2 = (−S3
2) to be

Y2 = − h√V6
, (3.33)

where h is defined in (3.22).

We can now compute the intersection number of the 3-cycles D1 and D2 by means of

the representative dual 3-forms. This is

D2 ·D1 =

∫

D1

Y2 =

∫

M6

Y2 ∧ Y1 =
1

V6

∫

M6

h ∧ ĥ = 1 . (3.34)

This agrees with the analysis of [23].

We still need to find the dual 3-form of the diagonal 3-sphere D0. In this case it is

convenient to use the ηM basis. We notice that ξi = ξ̂i amounts to going to the locus

η4 = η5 = η6 = 0. Either by changing variables or by evaluating directly in (3.9), we

obtain

dvol(D0) =
t3/2

√
τ1τ2τ3

η123 . (3.35)

It then follows that the dual 3-form is given by

Y0 =
a(4ab1b2b3)

1/2

4π2
η456 , (3.36)

where we have used that τ1τ2τ3 = (27/ab1b2b3)
1/4 as implied by (3.10).

As mentioned before, there must be a linear relation among the three supersymmetric

3-cycles that have been identified. The claim is that

D0 +D1 +D2 = 0 , (3.37)

in homology. This can be simply understood in terms of the dual 3-forms. In fact,

from (3.24) we have Y0 = h+ĥ
V6

, up to exact forms. Therefore, in cohomology, Y0 +Y1+Y2 =

0, modulo exact forms. This confirms the validity of (3.37).

The remaining intersection numbers are also easily calculated. We find for instance

D0 ·D2 =
∫
M6
Y0 ∧ Y2 = 1. In general,

Di ·Dj =

∫

M6

Yi ∧ Yj = δj,i−1 − δj,i+1 , (3.38)

where the indices are defined modulo 3. These are the intersection numbers found in [23].

In particular they satisfy, Di · (D0 +D1 +D2) = 0, consistent with (3.37).

We will now carry the discussion in the quotient space S3 × S3/Γ with Γ = Z
3
2. To

the 3-cycles, Di in the covering space we associate D′
i with corresponding dual forms Y ′

i

in the quotient. Closely following [23], let us assume that the lifting to the covering space

M6 = S3 × S3 is given by the map

(Y ′
0 , Y

′
1 , Y

′
2) → (Y0, 8Y1, 8Y2)

(D′
0,D

′
1,D

′
2) → (D0, 8D1, 8D2) . (3.39)
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With this Ansatz we then obtain for instance,

D′
2 ·D′

1 =

∫

S6

Y ′
2 ∧ Y ′

1 =

∫

S6

8Y2 ∧ 8Y1 =
1

8

∫

M6

8Y2 ∧ 8Y1 = 8

D′
0 ·D′

2 =

∫

S6

Y ′
0 ∧ Y ′

2 =

∫

S6

Y0 ∧ 8Y2 =
1

8

∫

M6

Y0 ∧ 8Y2 = 1 , (3.40)

where we have defined S6 = M6/Γ = S3 × S3/Γ to streamline expressions. As expected,

this is consistent with the normalization
∫

S6

η123456 =
V6

8
= C (3.41)

where Ct3 is the volume of S6. We will see that these intersection numbers also arise in

our model 1 in D=4 discussed in appendix A.

According to [23], the 3-cycle D′
0 corresponds to D′

0 = S3
D/Γ. Namely, D0 = S3

D is

an 8-fold cover of D′
0. Since cycles are not independent, this indicates that wrapping N

D6-branes around each of the cycles D′
i with i = 1, 2, requires wrapping D′

0 8N times. In

other words,

8D′
0 +D′

1 +D′
2 = 0 , (3.42)

which is true by virtue of the map (3.39) and the relation (3.37).

With all the information collected so far we can already establish a connection to

our model 1 explained in appendix A. In this model, with mass parameter F0 = 0, we

found that tadpoles could be cancelled by a setup of supersymmetric D6-branes wrapping

particular factorizable 3-cycles in the ηM basis. The concrete configuration is summarized

in table 1 where the 3-cycles are explicitly given. It consists of a stack of 8NB D6-branes

wrapping a cycle ΠA, NB D6-branes wrapping a cycle ΠB , plus NB D6-branes wrapping

the mirror cycle Π̃B . In the model, the geometric flux parameters satisfy a = bi = 2NB/c,

where c is related to the RR 2-form background. Interestingly enough, it is possible to

represent these factorizable cycles in terms of the supersymmetric 3-cycles in S3 × S3/Γ.

In fact, the following identifications can be made

ΠA = (1, 0)3 ≡ D′
0 ; ΠB = (−1, 1)3 ≡ D′

2 ; Π̃B = (−1,−1)3 ≡ D′
1 (3.43)

Evidence for these matchings comes from the equivalence of the loci described in both the

ηM and the (ξi, ξ̂i) basis, and from agreement of the intersection numbers. For instance,

ΠA · ΠB = 1 = D′
0 · D′

2 and ΠB · Π̃B = 8 = D′
2 · D′

1. Besides, below we will check that the

corresponding dual 3-forms do coincide.

Based on the above results from the analysis of supersymmetric 3-cycles in S3 × S3/Γ

we conclude that a setup of D6-branes wrapping the cycles D′
0, D

′
1 and D′

2, will lead

to tadpole cancellation. Otherwise stated, the corresponding dual 3-forms must add up

to the precise 3-form A3 needed to saturate the Bianchi identity. To substantiate this

claim we will examine the Bianchi identity for the RR 2-form in more detail. The starting

point is equation (A.20). For sources wrapping space-time the RR 7-form can be written
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as C7 = dvol4 ∧ X, where X is some 3-form in the internal space which we take to be

S6 = S3 × S3/Γ. Then, (A.20) leads to

∫

S6

X ∧ (dF 2 − F0H) +
√
C
∑

a

NaQa

∫

Πa

X = 0 . (3.44)

The factor of
√
C is necessary because we are writing dF 2 and H in a basis of forms with

normalization (3.41) or analogous in terms of the (ξi, ξ̂i) 1-forms.

To continue, recall that
∫
Πa
X =

∫
S6
X ∧ Y ′

a, where the 3-form Y ′
a is the Poincaré dual

of the 3-cycle Πa. Thus, from the above integral we arrive at the BI

dF 2 − F0H +
√
C
∑

a

NaQaY
′
a = 0 . (3.45)

In terms of the notation in section 2 we have

A3 =
∑

a

NaQaA
a
3 , (3.46)

where Aa
3 =

√
C Y ′

a is the contribution of each individual source. Recall that Na is the

number of D6-branes or O6-planes wrapping the 3-cycle Πa and Qa is the corresponding

charge.

In the following we focus on the massless case F0 = 0 as in model 1 of appendix A. As

argued in section 2, when m = 0, necessarily sources of positive charge must be included

to satisfy the BI. In this case, in our S3 ×S3/Z3
2 compactification, from previous results we

know that dF 2 is given by

dF 2 = −c
t
dJ = −3c

2t
W1ImΩ . (3.47)

In the ηM basis this yields the rather simple expansion

dF 2 = −c(3aη456 − b1 η
423 − b2 η

153 − b3 η
126) . (3.48)

Our results for tadpole cancellation in model 1 in appendix A suggest a solution to the BI,

dF 2 +A3 = 0. Concretely we propose that in this situation A3 can be written as

A3 = NB(8AA
3 +AB

3 + ÃB
3 ) , (3.49)

because NA = 8NB and QA = QB = 1. Indeed, it is straightforward to check that the BI

is satisfied with

AA
3 = η456 ,

AB
3 = −

(
η456 + η423 + η153 + η126 + η123 + η156 + η426 + η453

)
, (3.50)

ÃB
3 = −

(
η456 + η423 + η153 + η126 − η123 − η156 − η426 − η453

)
,

as long as a = bi = 2NB/c, which precisely guarantees tadpole cancellation.

– 12 –



J
H
E
P
0
2
(
2
0
0
8
)
0
8
6

To close our argument we compare the dual 3-forms Y ′
a with those found before for the

supersymmetric 3-cycles in S3 × S3/Z3
2. We find

Y ′
A =

1√
C
AA

3 =
(ab1b2b3)

3/4

2π2
η456 = Y0 = Y ′

0

Y ′
B =

1√
C
AB

3 = 8

(
− h√

V6

)
= 8Y2 = Y ′

2 (3.51)

Ỹ ′
B =

1√
C
ÃB

3 = 8

(
− ĥ√

V6

)
= 8Y1 = Y ′

1 .

Therefore, the cycles wrapped by D6-branes correspond to the “quotient spheres” D′
0, D

′
1

and D′
2, as already anticipated in (3.43).

As we might suspect, a more generic solution to the BI can be obtained as we now

explain. Again in the massless case, the problem is to solve

dF 2 +
√
C
∑

a

NaQaY
′
a = 0 . (3.52)

In general we can attempt a solution with 3 stacks of D6-branes wrapping the supersym-

metric quotient 3-spheres so that

A3 =
√
C
∑

a

NaQaY
′
a =

√
C (N0Y

′
0 +N1Y

′
1 +N2Y

′
2) , (3.53)

setting the charges to 1. Now, as suggested by (3.42), we choose N0 = 8N , N1 = N2 = N .

Then,

A3 = 8
√
CN(Y0 + Y1 + Y2) =

2N

(ab1b2b3)
1

4

(3aη456 − b1 η
423 − b2 η

153 − b3 η
126) , (3.54)

where we used the lifting (3.39) and the expansions of the dual forms in the ηM basis.

Comparing with (3.48) we see that the BI is satisfied provided that

c =
2N

(ab1b2b3)
1

4

. (3.55)

In the D=4 formulation developed in section A.1, this generic solution can be associated

to a particular configuration of supersymmetric D6-branes similar to model 1. The setup

consists of NB D6-branes wrapping ΠB = (−1, k) ⊗ (−1, ℓ) ⊗ (−1,m), where (k, ℓ,m) are

positive integers, NB D6-branes along the mirror 3-cycle Π̃B , plus NA = 8NB D6-branes

wrapping ΠA = (1, 0)3. It is not difficult to check that tadpoles are cancelled, and ΠB is

supersymmetric, as long as ac = 2NB , b1c = 2NBℓm, b2c = 2NBkm and b3c = 2NBkℓ.

Combining these parameters we reproduce (3.55) with N = NB

√
kℓm.

To finish this section we would like to comment on the massless spectrum originating

from the configuration of D6-branes. The interpretation is that in S3 × S3/Γ a setup of

NB D6-branes wrapping each of the cycles D′
1 and D′

2, as well as NA = 8NB D6-branes
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wrapping D′
0, allows to satisfy the BI. These D6-branes produce an anomaly-free spectrum

with gauge group U(NA) × U(NB) × U(NB) and massless matter content

(NA,NB,1) + (NA,1,NB) + 8(1,NB,NB) , (3.56)

consistent with the intersection numbers of the 3-cycles. Notice that the spectrum is chiral

and, therefore it cannot be continuously deformed away. This signals the stability of the

D6-brane configuration.

The above spectrum is the same as in model 1 in appendix A. We are assuming that

the curvature of the 3-spheres wrapped by the D6-branes is large. In fact, the radius is

controlled by the size modulus t whose vev can turn out large, for instance by adjusting

the RR flux e0 [1]. On the other hand, the fact that the D6-branes wrap 3-spheres can

have interesting consequences. For instance, since the first Betti number of S3 is zero, open

string massless scalar moduli are not expected. In the lines of [24] these, adjoint, scalars

would become massive through µ terms in the effective superpotential2. This could be an

appealing feature from a phenomenological perspective.

So far we have concentrated here in massless type IIA without orientifold planes.

Extensions to more general cases can in principle be worked out and could lead to attractive

models from the phenomenological point of view.

4. Flux compactification on AdS4 × CP
3

Compactification of massless type IIA supergravity on AdS4 × CP
3 have been studied

in detail in [12 – 14]. The idea was to look for solutions similar to the Freund-Rubin

compactification of eleven-dimensional supergravity. Thus, a non-trivial background for

the RR 4-form, F4 ∝ dvol4 is turned on. By Hodge duality this is equivalent to F6 ∝ dvol6.

The solutions are unwarped and have constant dilaton. There is no H flux. The RR 2-

form flux can be chosen to be F2 ∝ J , where J is the fundamental form of CP
3. When the

internal metric is given by the Fubini-Study metric the equations of motion are satisfied.

Furthermore the Bianchi identity for F2 is automatic because dJ = 0. It can be shown

that an extended N=6 supersymmetry is preserved.

Applying the general results reviewed in section 2 we can see that for m = 0 there is a

solution with N=1 supersymmetry when the metric in CP
3 is chosen to be nearly-Kähler.

However, in this case the Bianchi identity for F2 ∝ J is not satisfied because dJ 6= 0.

Presumably the tadpoles could be cancelled by adding D6-branes. The third homology of

CP
3 is trivial but there could exist supersymmetric 3-cycles.

Yet another N=1 solution with m = 0 can be found by choosing the metric on CP
3 and

the RR 2-form flux to descend from the metric of the squashed seven-sphere which gives an

N=1 solution of D=11 supergravity [25]. In this case the CP
3 metric is not Einstein and

therefore not nearly-Kähler. According to the general analysis it must be that the metric

is such that the two torsion classes W1 and W2 are different from zero. In fact setting

2We thank P. Cámara for these observations.
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Ω̂ = −iΩ in (2.3) tells us that

dJ =
3

2
W1Im Ω ; dΩ = W1J

2 + W2 ∧ J, (4.1)

where W1 = 4
3m̃e

−A and W2 is a real primitive 2-form. Substituting in (2.5) then gives

F2 = −1

4
W1J + ∗(W2 ∧ J) , (4.2)

where we have put the warp factor to zero. In principle it is then feasible to attain dF2 = 0

even if dJ 6= 0. Below we try to check these claims.

The generic metric on CP
3 can be constructed as a bundle with base S4 and fiber S2.

Denoting by (θ, ϕ) the coordinates of the S2 this means that

ds26 = ds̃24 +λ2(dθ− sinϕA1 + cosϕA2)2 +λ2 sin2 θ(dϕ− cos θ

sin θ
(cosϕA1 + sinϕA2) +A3)2 ,

(4.3)

where ds̃24 is the line element of S4 and AA is the self-dual SU(2) instanton potential on

S4. More explicitly,

ds̃24 = dψ2 +
1

4
sin2 ψΣAΣA ; AA = cos2 ψ

2
ΣA . (4.4)

The ΣA, A = 1, 2, 3, are left-invariant SU(2) 1-forms for which we use coordinates

Σ1 = cos γ dα+ sin γ sinα dβ ,

Σ2 = − sin γ dα+ cos γ sinα dβ , (4.5)

Σ3 = dγ + cosαdβ ,

Notice that dΣA = −1
2ǫABCΣB ∧ ΣC .

In the following we will employ a flat Sechsbein defined as

e1 = dψ ; ej =
1

2
sinψΣj−1 , j = 2, 3, 4 ,

e5 = λ(dθ − sinϕA1 + cosϕA2) , (4.6)

e6 = λ sin θ

(
dϕ− cos θ

sin θ

(
cosϕA1 + sinϕA2

)
+ A3

)
.

In the flat basis the Ricci tensor of the CP
3 metric is diagonal with components

Rab = (3 − λ2) δab ; Rij =

(
λ2 +

1

λ2

)
δij , (4.7)

where a, b = 1, · · · , 4, and i, j = 5, 6.

Taking λ2 = 1 gives the standard Einstein metric that is Kähler. A second Einstein

metric that is nearly-Kähler is obtained setting λ2 = 1
2 . In both cases the Einstein equation

of motion of type IIA supergravity can be solved with F2 ∝ J . Another solution can be
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found choosing λ2 = 1
5 and turning on an appropriate RR 2-form flux. Concretely, F2 must

be

F2 = −λ sin θ sinϕ(e12 + e34) − λ sin θ cosϕ(e13 + e42) − λ cos θ(e14 + e23) − 1

λ
e56 . (4.8)

It can be checked that dF2 = 0 and ∇mF
mn = 0. Moreover, we will see that F2 is of

the expected form (4.2), with W2 6= 0. In appendix B we will check that all equations of

motion are satisfied and that N=1 supersymmetry is preserved.

As already stressed in [12 – 14], the new CP
3 compactification of massless IIA su-

pergravity is directly related to compactification of D=11 supergravity on the squashed

seven-sphere [25]. Indeed, the metric on the squashed S7 can be written as3

ds27 = (λdτ −A)2 + ds26 , (4.9)

where ds26 is the above metric on CP
3 and the gauge potential A is such that dA gives pre-

cisely the RR 2-form background displayed in (4.8). When λ2 = 1
5 this seven-dimensional

metric is Einstein and admits only one Killing spinor.

The fundamental forms J and Ω can be obtained from the Killing spinor in six dimen-

sions. Details are presented in appendix B. The main results are

J = − sin θ sinϕ(e12 + e34) − sin θ cosϕ(e13 + e42) − cos θ(e14 + e23) + e56 ,

Re Ω = cos θ cosϕ(e126 + e346) + cos θ sinϕ(e136 + e426) + sinϕ(e125 + e345)

− cosϕ(e135 + e425) − sin θ(e146 + e236) , (4.10)

Im Ω = − cos θ cosϕ(e125 + e345) − cos θ sinϕ(e135 + e425) + sinϕ(e126 + e346)

− cosϕ(e136 + e426) + sin θ(e145 + e235) .

These forms satisfy (2.2).

The torsion classes are found after computing the exterior derivatives that turn out to

be exactly of the form (4.1) with

W1 =
2(1 + λ2)

3λ
; W2 ∧ J = λJ2 − 6λe1234 . (4.11)

Both W1 and W2 are real. In fact, dIm Ω = 0. We can check that W2 ∧ J ∧ J = 0 so that

W2 is primitive. It also follows that

∗(W2 ∧ J) = 2λJ − 6λe56 . (4.12)

With all this information it is a simple exercise to verify that the RR 2-form F2 given

in (4.8) can indeed be written as (4.2) when λ2 = 1
5 .

3The metric on the squashed S7 is ds2

7 = ds̃2

4 + λ2(dσA
− A

A)2, where σA is a second set of SU(2)

left-invariant 1-forms. To recover (4.9) just set σ1 = sin ϕ dθ +sin θ cos ϕ dτ , σ2 = − cos ϕ dθ +sin θ sin ϕ dτ ,

σ3 = −dϕ + cos θ dτ .
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5. Final remarks

The original motivation behind this paper was to identify the internal space implicit in a

class of N=1 type IIA AdS 4 vacua obtained using the effective D=4 formalism. As we

have explained, this internal space turns out to be S3×S3/Z3
2 with a nearly-Kähler metric.

This property, together with the structure of background fluxes, is in complete agreement

with the general results derived from supersymmetry conditions and equations of motion

in D=10.

Unlike the Minkowski case, AdS 4 N=1 type IIA compactifications have the peculiarity

that the equations of motion can be solved in the absence of orientifold planes of negative

tension. In the D=4 approach this can be simply understood from the tadpole cancellation

equations that include fluxes and sources [1]. InD=10, as reviewed in section 2, this follows

from the Bianchi identity for the RR 2-form [4]. In the S3×S3/Z3
2 compactification we have

found explicit solutions of the tadpole cancellation conditions and used them to construct

configurations of D6-branes that allow to solve the Bianchi identity in D=10.

A second motivation of our work was to find a concrete example of N=1 type IIA

compactification to AdS 4 in which the internal space is not nearly-Kähler. This possibil-

ity is allowed by the general analysis of flux vacua, it corresponds to the case in which

both torsion classes W1 and W2 are different from zero. Previous attempts to construct

examples of this sort failed because the Bianchi identity for the RR 2-form could not be

fulfilled [2]. Our contribution has been to observe that some solutions of massless type

IIA supergravity discovered long time ago [12 – 15] do fit within the general framework of

AdS 4 flux vacua while the internal manifold does not have a nearly-Kähler metric. We

considered compactification on CP
3 and showed that both torsion classes W1 and W2 are

different from zero. Moreover, the background of the RR 2-form has the correct expression

in terms of the torsion classes. Another example with both W1 and W2 non zero, already

studied in [10], which has as internal space the coset SU(3)/U(1)2, can be treated along

the same lines as in section 4.

In this note we have exemplified the validity and applicability of the effective D=4

approach to uncover properties of D=10 flux vacua. It is clearly desirable to extend the

effective formalism to compactifications with more generic internal manifolds. In the future

we hope to join efforts in pursuing further research on this interesting subject.
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A. Effective approach in D=4

This appendix serves several purposes. First we give a concise account of the effective action

for D=4, N=1 type IIA toroidal orientifolds [26 – 28]. We then describe to some extent

the specific model that turns out to be related to compactification on AdS 4 × S3 × S3.

We will also show that the results are in complete agreement with those derived from

supersymmetry conditions and equations of motion in D=10. Finally, we discuss tadpole

cancellation equations and provide configurations of supersymmetric D6-branes that solve

these equations.

In the D=4 effective formalism the analysis of vacua is based on the superpotential

generated by RR, NSNS and geometric fluxes. In type IIA orientifolds the flux induced

superpotential can be written as

W =

∫

M6

eJc ∧ F + Ωc ∧ (H + dJc) . (A.1)

The complexified forms defined as

Jc = B + iJ ; Ωc = C3 + iRe (e−φΩ) , (A.2)

are expanded in the basis of invariant 2 and 3-forms, with coefficients given by the moduli

fields. In the model we are considering these fields are the axiodilaton S, together with

three complex structure Ui and three Kähler moduli Ti. The relevant expansions are

Jc = iTiωi ; Ωc = iSα0 − iUiαi . (A.3)

As we saw in section 3, J = tiωi. The NSNS 2-form can also be expanded in terms of the ωi

as B = −viωi. The vi are the Kähler axions and indeed the Kähler moduli are Ti = ti + ivi.

For the axiodilaton and complex structure moduli we can substitute (3.9) to obtain

ReS ≡ s = e−φ

√
t1t2t3
τ1τ2τ3

; ReUi ≡ ui = sτjτk , j 6= k . (A.4)

The corresponding axions arise from the RR 3-form given by C3 = −ImSα0 + ImUiαi.

To compute the superpotential we need expansions for the background fluxes. We

follow the approach of [1] where the fluxes are chosen to comply with the Z2 ×Z2 symme-

try (3.2). Thus, just as Jc and Ωc, the fluxes are to be expanded in the basis of invariant

forms displayed in (3.5). Furthermore, since we are assuming that the moduli are those

of toroidal IIA orientifolds, the fluxes are required to conform to the orientifold involu-

tion (3.3). This means that F 0 and F 4 are even, whereas H, F 2 and F 6 are odd under

the orientifold involution [26]. The upshot is that background fluxes have the following

expansions
H = h0β0 + hiβi ; F 0 = −M ; F 2 = qiωi

F 4 = eiω̃i ; F 6 = e0α0 ∧ β0 .
(A.5)
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The exterior derivative of these fluxes and the Kähler form J are found using (3.4) that

define the internal space.

The scalar potential of the moduli has the standard N=1 expression

V = eK
{ ∑

Φ=S,Ti,Ui

(Φ + Φ∗)2|DΦW |2 − 3|W |2
}
, (A.6)

where we already assumed the classical Kähler potential K = −∑Φ=S,Ti,Ui
log(Φ + Φ∗),

and DΦW = ∂ΦW+W∂ΦK. Supersymmetric AdS minima are determined by the condition

DΦW = 0.

To obtain the model analyzed in [1] one chooses RR fluxes qi = −c and ei = e so that

a configuration with Ti = T is allowed. The resulting superpotential is simply4

W

C = e0 + 3ieT + 3cT 2 + iMT 3 + (ih0 − 3aT )S −
3∑

k=0

(ihk + bkT )Uk . (A.7)

This superpotential admits supersymmetric AdS minima provided that the fluxes sat-

isfy the constraint

3hka+ h0bk = 0 ; k = 1, 2, 3 . (A.8)

In this case the real parts of the axiodilaton and complex structure moduli are completely

determined in terms of the Kähler modulus according to

as = 2t(c−Mv) ; 3as = bkuk ; k = 1, 2, 3 . (A.9)

Recall that s = ReS, uk = ReUk, t = ReT and v = ImT and that the real part of the

moduli are positive definite. Thus, (A.9) requires that the geometric fluxes a and bk be of

the same sign. For the S and Ui axions only one linear combination is fixed, this is

3aImS + bkImUk = 3e+
3c

a
(3h0 − 7av) − 3M

a
v(3h0 − 8av) . (A.10)

To have the minimum with Ti = T it must also be that b1ImU1 = b2ImU2 = b3ImU3.

The vacuum expectation value for the Kähler modulus depends on whether the mass

parameter M vanishes or not. When M = 0 it is found that

v = v0 =
h0

3a
; 9ct2 = e0 −

h0e

a
− h2

0c

3a2
. (A.11)

In this case (A.9) implies that necessarily there is a flux of the RR 2-form, i.e. c 6= 0, and

furthermore that ac > 0 and cbk > 0. Background fluxes H and F 4 can be absent but then

the Freund-Rubin flux F 6 ∼ e0 must be turned on.

When M 6= 0 the Kähler axion satisfies the cubic equation

160(v−v0)3+294

(
v0−

c

M

)
(v−v0)2+135

(
v0−

c

M

)2

(v−v0)+v2
0

(
v0−

3c

M

)
+

1

Ma
(e0a−eh0) = 0.

(A.12)

4A volume factor C appears here due to normalization (3.41).
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The real part of the Kähler modulus is now determined from

t2 = 15(v − c

M
)(v − v0) . (A.13)

The solution for v must be real and such that t2 > 0.

Let us now check that the above results agree with the general analysis in D=10. To

begin observe that we have dIm Ω = 0 compared to dRe Ω̂ = 0. We find that in order to

match the D=4 and D=10 results we need to make the choice

Ω̂ = −iΩ ; α+ β = 0mod 2π . (A.14)

The full exterior derivatives of J and Ω are given in (3.11).

The next step is to express the field strengths in terms of the background fluxes and

the moduli. In the case at hand, with qi = −c, ei = e, Ti = T , it is possible to write most

forms in terms of J and Ω. For example, B = −vJ/t, F 4 = eJ2/2t2, and so on. After

substituting in (2.6) we find

H =
seφ

t3
(h0 − 3av)Im Ω ,

F2 =
Mv − c

t
J , (A.15)

F4 =
[
3e+ 6cv − 3Mv2 − (3aImS + biImUi)

] J2

6t2
,

F6 =

[
e0 − 3ev − 3cv2 +Mv3 +

(
v − h0

3a

)
(3aImS + biImUi)

]
J3

6t3
.

All these expressions greatly simplify upon using (A.10) and (A.12). In the end we obtain

dJ=
6(c −Mv)

t
eφIm Ω ; dΩ =

4(c−Mv)

t
eφJ2 ; H =

2

5
M eφIm Ω , (A.16)

F0=−M ; F2 =
Mv − c

t
J ; F4 = −3M

10
J2 ; F6 =

3(c−Mv)

2t
J3 .

These agree with (2.3) and (2.5) provided that

φ = 3A ; m =
M

5
e4A ; m̃ =

3(c −Mv)

t
e4A . (A.17)

The relation between the dilaton and the warp factor is precisely the same found in the

ten-dimensional analysis.

It is also interesting to compute the cosmological constant which follows from the value

V0 of the scalar potential at the minimum. For the AdS minimum, V0 = −3eK |W0|2. To

determine W0 we can substitute the vevs of the moduli in (A.7). A more general approach

is to use the original form of the superpotential (A.1). Using previous results to evaluate

the integrand at the minimum we arrive at

eJc ∧ F + Ωc ∧ (H + dJc)
∣∣
0

=
2i

3
(m+ im̃) e−4A J3 . (A.18)
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This shows that the superpotential at the minimum is proportional to the complex constant

µ. More precisely, |W0|2 = 16t6e−8A|µ|2C2. For the classical Kähler potential, eK =

(27t3su1u2u3 C)−1, which can be rewritten as eK = e4φ/128t9C3. Therefore,

V0 = −3e4A

8Ct3 |µ|
2 =

Λ

M2
P

. (A.19)

where Λ = −3|µ|2 is the cosmological constant and M2
P = 8e2A−2φCt3. The moduli above

are evaluated at the minimum and we are taking α′ = 1.

A.1 Tadpole cancellation and D6-branes

The fluxes induce tadpoles for the RR 7-form C7 that can also couple to D6-branes and

O6-planes. In general these objects span space-time and wrap a 3-cycle in M6. The RR

7-form can then be written as C7 = dvol4∧X, where X is some 3-form in the internal space,

which can be expanded in a convenient basis. We denote by Πa the 3-cycle wrapped by a

stack of Na D6a-branes or O6a-planes. The coupling of C7 in the action has contributions

from fluxes and from the sources, namely
∫

M4×S6

C7 ∧ (dF 2 − F0H) +
√
C
∑

a

NaQa

∫

M4×Πa

C7 , (A.20)

where Qa = 1 for D6-branes and Qa = −4 for O6-planes. Here we are considering the

internal space to be S6 = S3×S3/Z3
2. The factor

√
C must be included for consistency with

the normalization of the 1-form basis (see 3.41).

As usual in the D=4 effective formulation, it appears useful to consider factorizable

3-chains

Πa = (n1
a,m

1
a) ⊗ (n2

a,m
2
a) ⊗ (n3

a,m
3
a) , (A.21)

where ni
a (mi

a) are the wrapping numbers along the ηi (ηi+3). In particular, there is a basis

of 3-chains Πijk spanning the {i, j, k} directions. For instance, Π123 = (1, 0)⊗(1, 0)⊗(1, 0),

etc. . . To each Πijk we have a corresponding “dual” 3-form ηijk such that
∫

Πi′j′k′

ηijk =
1√
C
δi,i′ δj,j′ δk,k′ . (A.22)

Integrating over the 3-chain Πa then gives,
∫
Πa
η123 = 1√

C n
1
an

2
an

3
a,
∫
Πa
η156 = 1√

C n
1
am

2
am

3
a,

and so on.

It is worth noticing that the basis manifolds Πijk are not necessarily closed cycles and,

therefore, neither is Πa, for generic wrappings. As an example, consider the exact form

d(ξ1∧ξ̂1) = 2
√
ab1b2b3(aη

456+b1η
423−b2η153−b3η126), then,

∫
Π456

d(ξ1∧ξ1) = 2√
C
√
ab1b2b3,

indicating that the manifold Π456 has a boundary (see [29] for a related discussion). We

rely on tadpole cancellation and supersymmetry to restrict to the adequate wrappings for

D6-branes. When the orientifold action (3.3) is implemented there are eight O6-planes

along ⊗i(1, 0) and image D6-branes wrapping ⊗i(n
i
a,−mi

a) must be included.

To preserve the same supersymmetries as the background the D6-branes must wrap

cycles Πa such that

θ1
a + θ2

a + θ3
a = 0 mod 2π , (A.23)
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where the angles are measured in accordance with

tan θj
a =

mj
aτj

nj
a

. (A.24)

Recall that the τi are the complex structure moduli that enter in the metric as shown

in (3.7). In the vacuum we are considering they satisfy (3.10).

From the supersymmetric constraint (A.23) it follows that

τ1τ2τ3m
1
am

2
am

3
a − τ1m

1
an

2
an

3
a − τ2n

1
am

2
an

3
a − τ3n

1
an

2
am

3
a = 0 . (A.25)

This condition amounts to Im Ω
∣∣
Πa

= 0. In fact, the supersymmetric cycles are calibrated

by Re Ω and the condition on the angles is equivalent to ReΩ
∣∣
Πa

= dvol(Πa). Besides, the

factorizable cycles satisfy J
∣∣
Πa

= 0.

Substituting the fluxes and the data for the sources in (A.20) we obtain the tadpole

cancellation equations. The conditions receiving flux contributions are

∑

a

NaQan
1
an

2
an

3
a + (Mh0 − 3ac) = 0 ,

∑

a

NaQan
1
am

2
am

3
a + (Mh1 + b1c) = 0 , (A.26)

∑

a

NaQam
1
an

2
am

3
a + (Mh2 + b2c) = 0 ,

∑

a

NaQam
1
am

2
an

3
a + (Mh3 + b3c) = 0 .

The sum in a includes O6a-planes, when orientifold actions are performed, as well as

D6a-branes and their orientifold images if necessary. Finally, there are fluxless conditions

∑

a

NaQam
1
am

2
am

3
a = 0 ,

∑

a

NaQam
1
an

2
an

3
a = 0 , (A.27)

∑

a

NaQan
1
am

2
an

3
a = 0 ,

∑

a

NaQan
1
an

2
am

3
a = 0 .

When the orientifold action (3.3) is implemented these last four constraints are automati-

cally satisfied once images are included.

When M 6= 0 the tadpole equations admit a solution without branes or O-planes.

This happens because hk = −h0bk/3a and then all flux tadpoles can cancel simultaneously

when Mh0 = 3ac [1]. Now, the relations (A.17) and (A.13) imply that this condition is

equivalent to m̃2 = 15m2. As explained in section 2 this is precisely the case when the

internal space is nearly-Kähler and no sources are necessary to satisfy the Bianchi identity
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Na (n1
a,m

1
a) (n2

a,m
2
a) (n3

a,m
3
a)

NA (1, 0) (1, 0) (1, 0)

NB (−1, 1) (−1, 1) (−1, 1)

NB (−1,−1) (−1,−1) (−1,−1)

Table 1: Wrapping numbers for D6-branes in model 1

Na (n1
a,m

1
a) (n2

a,m
2
a) (n3

a,m
3
a)

N0 (1, 0) (1, 0) (1, 0)

N1 (1, 0) (0,−1) (0, 1)

N2 (0, 1) (1, 0) (0,−1)

N3 (0, 1) (0,−1) (1, 0)

Table 2: Wrapping numbers for D6-branes in model 2

for F2. In D=10 we have further seen that when m̃2 > 15m2 the Bianchi identity can be

satisfied by adding sources of positive charge. In the D=4 approach it is indeed evident

that whenever Mh0 < 3ac the tadpoles can be cancelled by adding only D6-branes.

To present examples of tadpole cancellation with only D6-branes we will consider the

case M = 0 in the S3 × S3 compactification that we have been analyzing. A first model

consists of the factorizable D6-branes shown in table 1. The third stack is the mirror image,

m̃i
B = −mi

B, of the second and it is included to saturate the fluxless tadpole equations. We

also take NA = 8NB . The first stack has θi
A = 0, hence it is supersymmetric independently

of the values of the complex structure parameters. On the other hand, substituting the

wrapping numbers in (A.26) gives the relations 2NB = ac = b1c = b2c = b3c, needed

for tadpole cancellation. Next, using that τi = bi
√

3a/b1b2b3, we find τ1 = τ2 = τ3 =√
3. We can then check that the second and third stack are also supersymmetric. In

fact, computing tan θi
B for the second shows that θi

B = 2π/3. Assuming that the Πa

cycles have large volume, in this model 1 the resulting gauge group is U(NA) × U(NB) ×
U(NB). According to the intersections between cycles, the matter content consists of chiral

multiplets transforming as

(NA,NB,1) + (NA,1,NB) + 8(1,NB,NB) . (A.28)

The multiplicity 8 of the last representation arises from the intersection number between

the cycle B and its mirror. Since NA = 8NB this chiral spectrum is free of gauge anomalies.

There are other D6-brane configurations capable of canceling tadpoles. Some are

equivalent to the setup in model 1 but others belong to a different class. For instance,

in table 2 we display a model 2 with four stacks of branes that are all supersymmetric

independently of the complex structure moduli. To cancel tadpoles the numbers of branes

in each stack must be related to the fluxes by N0 = 3ac and Ni = bic. In this model the

resulting spectrum is non-chiral.
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B. Supersymmetric vacua of massless type IIA supergravity in D=10

In this appendix we tersely summarize some basic aspects of compactification of massless

IIA supergravity on AdS4 × M6. We will review the case when the internal space is CP
3

and appropriate fluxes are turned on so that there is a vacuum with N=1 supersymmetry

in D=4 [12 – 14]. Our main goal is to explicitly find the six dimensional Killing spinor

in order to determine the fundamental forms J and Ω that define the SU(3) structure.

We will follow and refer to the discussion of [12] where the equations of motion and the

supersymmetry transformations are spelled out in full detail.

We consider a class of vacua with background metric of the product form (2.1) but

to simplify the warp factor A is fixed to zero. The dilaton φ is assumed to be constant

whereas the NS 2-form and its field strength are taken to vanish. On the contrary, there

are non-trivial RR fluxes. For the 4-form one makes the Freund-Rubin Ansatz

Fµναβ = 3fǫµναβ ; ǫ0123 =
√−g4 , (B.1)

while other components are zero. For the RR 2-form there is a flux Fmn through M6 to be

specified shortly. Under these conditions the equations of motion reduce to

Rµν = −12eφ/2f2gµν ,

Rmn = 6eφ/2f2gmn +
1

2
e3φ/2FmpF

p
n , (B.2)

eφFmnF
mn = 24f2 ; ∇mF

mn = 0 .

The Einstein equation in D=4 shows that space-time can indeed be taken to be AdS4 with

cosmological constant Λ = −12eφ/2f2.

To characterize the internal space we still need to specify the flux F2. We will see that

it is consistent to take M6 to be CP
3 with metric given in (4.3), while F2 can be set equal

to the 2-form (4.8). This RR 2-form satisfies the equation of motion and the properties

FmnF
mn = 2

(
2λ2 +

1

λ2

)
; FacF

c
b = λ2δab ; FikF

k
j =

1

λ2
δij , (B.3)

where a, b, c = 1, · · · , 4, and i, j, k = 5, 6, are flat indices.

Once the flux F2 is given, the dilaton equation of motion implies that the vevs eφ, f

and the metric parameter λ are related by

eφ
(

2λ2 +
1

λ2

)
= 12f2 . (B.4)

Substituting in the D=6 Einstein equation we then find that in the flat basis the Ricci

tensor is diagonal with components

Rab =
1

2
e3φ/2

(
3λ2 +

1

λ2

)
δab ; Rij = e3φ/2

(
λ2 +

1

λ2

)
δij . (B.5)
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The Ricci tensor of the generic CP
3 metric has precisely this structure. Comparing

with (4.7) we see that the dilaton vev has to be eφ = 1. Moreover, the parameter λ

must be such that

5λ2 − 6 +
1

λ2
= 0 . (B.6)

There is a solution with λ2 = 1 for which the metric is Einstein. We are more interested

in the solution with λ2 = 1/5. In this case, from (B.4) it transpires that the Freund-Rubin

parameter is fixed to be f2 = 9/20.

We now discuss the requirements for residual supersymmetry in D=4. We will employ

exactly the same conventions of [12] for the D=10 Dirac matrices. In D=6 we basically

adopt the matrices used in [25] in D=7. With flat indices these are

Γ1 = iγ0 ⊗ 1 ; Γ2 = γ1 ⊗ 1 ; Γ3 = γ2 ⊗ 1 ; Γ4 = γ3 ⊗ 1 (B.7)

Γ5 = iγ5 ⊗ σ1 ; Γ6 = iγ5 ⊗ σ2 ; Γ0 = Γ1 · · ·Γ6 = iγ5 ⊗ σ3 ,

where σi are the Pauli matrices. The 4-dimensional matrices are

γ0 =

(
0 1
1 0

)
; γa =

(
0 σa

−σa 0

)
, (B.8)

and γ5 = −iγ0γ1γ2γ3. We will also need the charge conjugation matrix in D=6 which in

our conventions is given by C = Γ2Γ4Γ6.

To study the conditions for the vacuum to preserve supersymmetry we first write the

10-dimensional parameter as ǫ⊗ η, where ǫ and η are respectively spinors in four and six

dimensions. We then substitute the vevs of all fields in the supersymmetry transformations

of the fermionic fields which in D=10, IIA supergravity are the gravitino and the dilatino.

We refer the reader to reference [12] for the explicit equations of these transformations.

From the dilatino variation we obtain

(S + 2f)η = 0 , (B.9)

where the matrix S depends on the RR 2-form flux as

S =
1

2
FmnΓmnΓ0 . (B.10)

For the F2 background in (4.8), S turns out to have eigenvalues 1/λ, (2λ2 − 1)/λ, and

−(2λ2 + 1)/λ, with degeneracies 4, 2 and 2 respectively. Remarkably, for the case of interest

with λ2 = 1/5 and f2 = 9λ2/4, S can have an eigenvalue −2f as long as we take f = 3λ/2.

The corresponding eigenvector has the simple form

η =




s1
s2
s3
s4
0
0
0
0




; s1 = −sin θ e−iφ s3
1 + cos θ

; s4 =
sin θ eiφ s2
1 + cos θ

, (B.11)
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where s2 and s3 in principle depend on all internal coordinates.

From the gravitino variation δψµ, using (B.9), we find

Dµǫ− eφ/4fγ5γµǫ = 0 . (B.12)

This is the expected equation for the supersymmetry parameter in AdS4 with cosmological

constant Λ = −12eφ/2f2. Finally, from the variation δψm we obtain the Killing equation

Dmη −
f

2
Γmη −

1

4
F n

m ΓnΓ0η = 0 , (B.13)

where we have set eφ = 1. For the covariant derivative acting on spinors we use the

conventions of [25].

It remains to solve the Killing equation to determine the unknown functions s2 and s3
in η. From the ψ component we find

s2 = ie−iφ s3 . (B.14)

It further follows that s3 is completely independent of the S4 coordinates (ψ,α, β.γ), but

depends on the S2 variables as

s3 = eiδ e−iφ/2 cos
θ

2
, (B.15)

where δ is a constant phase. The normalization guarantees that the Weyl spinors

η± =
1 ± iΓ0

2
η (B.16)

satisfy η†±η± = 1. The phase δ is fixed by imposing the reality condition η∗+ = C η−.

We are now ready to compute the fundamental forms J and Ω defined by

Jmn = iη†− Γmn η− ; Ωmnp = η†+ Γmnp η− . (B.17)

In the end we obtain the results reported in section 4. We stress that there is a unique

Killing spinor η so that the internal manifold has SU(3) structure and there is N=1 su-

persymmetry in D=4.
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